Работу провели сотрудники Центра компетенций Национальной технологической инициативы (НТИ) по направлению «Моделирование и разработка новых функциональных материалов с заданными свойствами» (ЦНФМ) на базе Новосибирского госуниверситета, сообщили в пресс-службе вуза.
«Мы подали заявку на выдачу патента РФ на изобретение «состав концентрата и способ его получения». Этот материал используется для модификации силиконов, как низковязких, так и высоковязких. Благодаря ему удаётся повысить прочность и задать материалу электропроводящие свойства, которые раньше было сложно достичь», — рассказал научный сотрудник ЦНФМ НГУ Андрей Скуратов. Силиконовые резины широко применяются в промышленности и медицине: из них делают уплотнительные кольца, прокладки, покрытия для металлов, конвейерные ленты, а также детали медицинского оборудования.
«Мы используем особый метод, при котором нанотрубки как бы “расплетаются” и диспергируются. На выходе получается рабочий продукт — концентрат. Использование концентрата нанотрубок легко встраивается в технологический процесс изготовления силиконовых резин, не изменяя его, что делает внедрение нашей разработки удобным для промышленности», — пояснил Андрей Скуратов.
Одним из ключевых преимуществ новых материалов стала возможность тонко регулировать уровень электропроводности за счет подбора концентрации МУНТ в силиконовой матрице. Эффективный диапазон содержания нанотрубок составляет от 0,2 до 0,8 мас.%, что позволяет получать материалы с заданными электрическими характеристиками без ухудшения их эластичности и прочности. Такой подход дает возможность адаптировать материал под конкретные требования применения — от антистатических до токопроводящих свойств. В медицине это особенно важно, поскольку статическое электричество может притягивать пыль и вызывать загрязнение поверхности изделий.
Разработанный концентрат на основе нанотрубок открывает путь к созданию так называемых «умных» силиконовых материалов с заданными свойствами. Из них можно изготавливать детали для автомобильной, космической и горнодобывающей промышленности, медицинское оборудование, конвейерные системы.
«Мы смогли не только подтвердить улучшение физических характеристик, но и показать, что материал становится функционально гибким. С его помощью можно корректировать электрические свойства в зависимости от потребностей заказчика. А это открывает возможности для очень широкого применения», — подчеркнул ученый.