Ученые Университета МИСИС и Института синтетических полимерных материалов им. Н. С. Ениколопова (ИСПМ РАН) создали органические полупроводники для широкоформатных перовскитных модулей, которые при низком освещении увеличивают их мощность до 90%, а КПД на 2,42%. В перспективе новый тип солнечных батарей позволит эффективно вырабатывать электроэнергию не только в солнечных регионах, но также в областях с большим количеством пасмурных дней, городской застройке и даже внутри зданий.
«Долгосрочные стратегии развития энергетики на основе возобновляемых источников — одно из важных направлений энергетической политики страны. На протяжении ряда лет ученые Университета МИСИС под руководством молодого талантливого исследователя Данилы Саранина — к. т. н., заведующего лабораторией перспективной солнечной энергетики — в рамках программы „Приоритет-2030“ ведут разработки новых материалов и технологий для альтернативной энергетики. Так, применение созданного учеными НИТУ МИСИС органического полупроводника более чем вдвое увеличит мощность широкоформатных перовскитных модулей, позволит эффективнее вырабатывать электроэнергию даже в условиях низкой освещенности», — рассказала ректор НИТУ МИСИС Алевтина Черникова.
Солнечные панели из галоидных перовскитных элементов — это тонкопленочные структуры, состоящие из нанокристаллического перовскитового поглотителя, расположенного между слоями переноса заряда. Они могут вырабатывать больше энергии, чем кремниевые аналоги, а также их производство экономически целесообразнее. Самая высокая эффективность преобразования энергии у них на данный момент составляет 26,1%.
Чтобы повысить производительность перовскитных солнечных элементов, ученые синтезировали самособирающийся монослой на основе трифениламина с карбоксильной связующей группой. Его применение улучшило перенос заряда между перовскитными поглотителями и неорганическими слоями.
«Новый самособирающийся монослой — один из наиболее простых с точки зрения синтеза. Подобные материалы широко применяются благодаря высокой стабильности и адгезии. Однако для получения материала важно учитывать ряд требований. Среди них: термическая, фото- и электрохимическая стабильность, подходящий уровень молекулярной орбитали для переноса положительно заряженных носителей заряда с перовскита на электрод и химическая совместимость между покрытиями. Также важно избегать „паразитического“ поглощения энергии при прохождении солнечных лучей через трехслойную структуру материала», — рассказала сотрудница лаборатории перспективной солнечной энергетики НИТУ МИСИС Екатерина Ильичева.
После нанесения монослоя возросла эффективность носителей заряда и при этом снизилась потеря энергии. Тесты при естественном свете показали, что перовскитные элементы с монослоем сохраняют до 98% своей первоначальной производительности после 1000 часов работы, тогда как необработанные устройства теряют более 20% мощности уже через 400 часов. Результаты исследования подробнее описаны в научном журнале Journal of Power Sources (Q1).