Такие системы комбинируют различные методы охлаждения для более эффективной и экологически устойчивой работы. Их применяют в кондиционерах, холодильниках и других устройствах. Чаще всего они работают на принципах компрессорного охлаждения: температура снижается за счет хладагентов — веществ (обычно газов), которые при испарении забирают тепло у того объекта, который нужно охладить.
У компрессорного охлаждения есть недостаток. Хладагенты при повышенной температуре — например, при разморозке холодильника — выделяют токсичные соединения: фтор и хлорид водорода. Экологичнее и безопаснее использовать магнитное охлаждение, при котором твердое вещество меняет температуру под воздействием окружающего его магнитного поля. Если объект поместить в постепенно усиливающееся магнитное поле, то вещество станет охлаждаться и поглощать тепло из окружающей среды. Если силу магнитного поля, напротив, снижать, объект будет выделять тепло и нагреваться.
Также этот тип охлаждения можно использовать для достижения температур в очень широком диапазоне, включая экстремально низкие. В сравнении с холодильником, который обычно работает в диапазоне от +4°C до -20°C, магнитное охлаждение позволяет достичь гораздо более низких температур, близких к абсолютному нулю (-273,15°C). В последние годы ученым удалось несколько новых типов магнитных материалов, подходящих для магнитного охлаждения, однако их количество остается ограниченным.
Сотрудники Института физики имени Х. И. Амирханова Дагестанского федерального исследовательского центра РАН(Махачкала) исследовали способность сплава на основе никеля, марганца, олова и небольшого количества меди изменять свою температуру под действием магнитного поля.
Ученые провели эксперименты с этим сплавом, поместив его в прибор, к которому прикладываются постоянные и импульсные магнитные поля и в котором поддерживаются разные температуры. Они использовали диапазон температур от -25°C до +50°C, в котором наблюдается наибольшее изменение магнитных свойств исследуемого сплава. Оказалось, что в диапазоне температур от -20°C до 10°C намагниченность сплава резко изменяется, что может свидетельствовать о значительных изменениях температуры сплава при воздействии магнитного поля.
Авторы смогли, действуя на сплав магнитным полем, максимально снизить температуру образцов на 13,15°C. Такой эффект наблюдался, когда охлажденный до температуры 1,85°С сплав помещали в импульсное магнитное поле. При этом образец был изолирован от окружающей среды и не мог обмениваться с ней теплом. Когда магнитное поле отключали, сплав сохранял низкую температуру (около -11°С).
Такой материал перспективен для гибридных систем охлаждения, уверены ученые. Это инновационный подход, в котором комбинируются традиционные методы (например, компрессорное или термоэлектрическое) и магнитное охлаждение.
«Предложенный метод позволяет охлаждать объекты на -13°C всего за 0,1 секунды. Для сравнения, чтобы охладить холодильник, работающий на основе газовых хладагентов, на 1,8°C, в среднем требуется одна минута. Поэтому магнитное охлаждение показывает более эффективные результаты. Полученные данные будут полезны при разработке гибридных систем охлаждения, например бытовых холодильников», — рассказал руководитель проекта Адлер Гамзатов, ведущий научный сотрудник Института физики имени Х. И. Амирханова Дагестанского федерального исследовательского центра РАН.
Результаты исследования, поддержанного Российским научным фондом, опубликованы в журнале Applied Physics Letters.