«Одинаковый ионный состав всех функциональных слоев топливного элемента повышает их сродство друг с другом, благодаря этому значительно снижается химическое взаимодействие слоев. Это позволяет устройству функционировать дольше, чем имеющиеся аналоги, что заметно как при изготовлении единичной электрохимической ячейки, так и во время работы нескольких элементов. Кроме того, для производства ТОТЭ предлагаемой нами конструкции самыми дорогими реагентами являются соединения лантана и галлия, добыча которых осуществляется у нас в России. В будущем это позволит организовать производство из полностью отечественных материалов», — объяснил Денис Осинкин, старший научный сотрудник кафедры экономики природопользования УрФУ и заведующий лабораторией кинетики Института высокотемпературной электрохимии УрО РАН.
Классическая конструкция топливного элемента предполагает использование множества функциональных слоев, имеющих совершенно разный химический и фазовый состав. Уральские ученые впервые предложили использовать в качестве катода, анода и электролита одинаковые материалы, что помогает сократить время и стоимость изготовления устройств за счет уменьшения технологической цепочки производства порошкового материала и количества высокотемпературных обработок.
В качестве топлива для ТОТЭ используются водородсодержащие газы, создающие экстремальную восстановительную атмосферу. Новые материалы показали в таких условиях хорошую стабильность, проработав более 950 часов с минимальной деградацией и сохранив низкое сопротивление при температуре 800°C.
«То, что наша единичная электрохимическая ячейка показывает незначительное снижение характеристик при выдержке в таких условиях на протяжении почти 1000 часов, позволяет нам прогнозировать долговечность устройства на основе нашей разработки. На сегодняшний день известны результаты испытаний ТОТЭ на протяжении 100 тыс. часов. Однако в лабораторных условиях такие длительные испытания не проводятся. Считается, что для анализа стабильности характеристик достаточны результаты долговременных испытаний на протяжении 500-1000 часов», — добавил Денис Осинкин.
Добиться таких показателей ученым удалось за счет использования принципа «симметричной ячейки», когда у топливного элемента и электроды, и электролит сделаны на основе соединений близкого или даже идентичного ионного состава для максимального сближения свойств.В настоящий момент внедрению в повсеместное пользование подобных инновационных твердооксидных топливных элементов препятствуют в основном инфраструктурные факторы: отсутствие рентабельного способа доставки водорода до устройства и высокая стоимость этого водорода. Классические методы получения электроэнергии хоть и являются не всегда экологически чистыми, но до сих пор считаются самыми дешевыми. Поэтому ученые отмечают, что следующий этап исследования данной технологии — масштабирование.
«Для приближения к промышленному производству ТОТЭ важным этапом является переход на высокопроизводительные технологии получения несущего слоя электролита, например, на технологию шликерного литья. Она позволит увеличить как количество керамических пластин, так и их геометрические размеры. После получения первой укрупненной электрохимической ячейки необходимо будет также убедится в ее стабильной работе в единичной экземпляре и в стэке, что позволит тестировать полноценное устройство в рабочем режиме», — подчеркнул Денис Осинкин.
Разработка выполнена при поддержке Российским научным фондом и опубликована в журнале Nanomaterials.