Ученые синтезировали магнитный материал для высокоточной электроники

Московские ученые синтезировали высокочувствительные магнитные материалы на основе арсенида кадмия с вкраплениями хрома и описали их микроструктуру. Такие материалы полезны при разработке устройств магнитной памяти, средств связи, сенсоров и микроэлектроники нового поколения. Знания об их строении позволят точно настраивать магнитные свойства в зависимости от задач, которые должен будет выполнять материал. 

Современные электронные устройства, например, компьютеры и телефоны, в основном обрабатывают и хранят информацию с помощью электрических зарядов. Однако есть энергетически более выгодный подход, основанный на управлении спином — магнитным моментом — электронов. Существуют магниточувствительные материалы, электроны в атомах которых под действием внешнего магнитного поля могут синхронизировать (условно, выстраивать в одном направлении) свои спины. Благодаря этому состоянием, в частности, намагниченностью таких материалов можно управлять и тем самым записывать и хранить с их помощью информацию.

Ученые из Института общей и неорганической химии имени Н.С. Курнакова РАН (Москва) с коллегами из Физического института имени П.Н. Лебедева РАН (Москва) и Национального исследовательского центра «Курчатовский институт» (Москва) синтезировали магниточувствительные материалы на основе арсенида кадмия (соединения кадмия с мышьяком) и описали их микроструктуру.

Это соединение выбрали в качестве основы потому, что в нем электроны — носители заряда — очень подвижны, а это свойство позволяет создавать спин-поляризованные структуры. В матрицу материала исследователи дополнительно ввели атомы хрома в разных концентрациях (от 1 до 6%), сплавив исходные соединения между собой при температуре 740°C, сообщила пресс-служба Российского научного фонда.

Затем ученые проанализировали химический состав и структуру полученных материалов. Оказалось, что хром таким образом «встраивается» в кристаллическую решетку арсенида кадмия, что приводит к образованию трех отдельных фаз: исходного арсенида кадмия, арсенида хрома (то есть кадмий частично замещает атомы хрома в молекулах) и чистого кадмия.

Рассматривая микроструктуру образцов под микроскопом, исследователи определили, что большую часть сплава (около 96,4%) составляет арсенид кадмия, арсенид хрома (1,6%) имеет вид небольших более темных вкраплений, а кадмий (2%) — светлых областей. То, что кадмий не распределяется равномерно по сплаву, а остается в виде отдельных вкраплений, говорит о том, что предел его «растворимости» довольно низкий — не превышает 0,1%.

«Магниточувствительные материалы перспективны для создания большого количества устройств информатики, а также магнитной памяти, средств связи, сенсоров различного типа и других приложений. Исследование того, как взаимодействуют составные компоненты таких материалов и какие фазы образуются при их сплавлении, важно, чтобы подбирать их оптимальные составы. Наличие данных по фазовым равновесиям позволяет синтетику или технологу проводить практические работы с конкретным составом композита, имея подтвержденную информацию о прогнозируемых или подтвержденных свойствах синтезируемого соединения», — рассказал участник проекта Алексей Риль, научный сотрудник лаборатории полупроводниковых и диэлектрических материалов ИОНХ РАН.

Ученые продолжают исследовать влияние различных добавок на магнитотранспортные свойства композитных материалов на основе арсенида кадмия, пниктидов алюминия, индия и галлия. Кроме того, ученые ведут работы по созданию сенсоров магнитного поля на их основе.

Результаты исследования, поддержанного грантом Российского научного фонда, опубликованы в журнале Vacuum.