Геологи Санкт‑Петербургского государственного университета в составе научного коллектива показали, что привычные оксиды железа в наноразмерной форме могут стать основой для биосенсоров и электроники будущего.
Оксиды железа, формирующие знакомую всем ржавчину, в наномасштабе превращаются в уникальный инструмент для науки и техники. Материалы на основе этого соединения экологичны, устойчивы, технологичны, а также обладают необычными магнитными свойствами. Они могут использоваться в спинтронике — новом направлении электроники, где информация хранится и передается не только за счет электрического заряда, как в привычных микросхемах, но и благодаря особому «магнитному компасу» внутри каждого электрона. Такой двойной способ кодирования данных позволяет создавать более быстрые, компактные и энергоэффективные устройства. Результаты исследования опубликованы в научном журнале «Физика твердого тела».
Не менее важное направление применения оксида железа — сенсорика, где нужны материалы, которые «чувствуют» изменения среды: от присутствия молекул в биосенсоре до слабых магнитных полей в датчике. Чем сложнее и разнообразнее поверхность слоя, тем выше может быть его чувствительность, а значит, точнее работа сенсора.
Ученые Санкт‑Петербургского государственного университета, Санкт‑Петербургского государственного электротехнического университета «ЛЭТИ» имени В. И. Ульянова (Ленина) совместно с коллегами из Физико‑технического института имени А. Ф. Иоффе РАН и Дальневосточного федерального университета изучили, как изменяются магнитные свойства тонких слоев оксида железа при различных условиях их выращивания.
«Нам удалось зафиксировать „вихревые“ магнитные структуры в тонких слоях оксидов железа. „Вихрь“ считается устойчивым образованием, и именно поэтому его можно использовать для хранения информации. Наша задача — получить такие слои, которые смогут выступать чувствительными элементами биосенсоров», — пояснил доцент кафедры микро‑ и наноэлектроники СПбГЭТУ «ЛЭТИ» Камиль Гареев.
Работа включала в себя несколько последовательных этапов. Сначала на базе лаборатории физики профилированных кристаллов ФТИ имени А. Ф. Иоффе РАН методом ультразвуковой паровой химической эпитаксии (mist‑CVD) на сапфировой подложке ученые получали исследуемые слои оксида железа. Затем в ресурсных центрах Научного парка СПбГУ авторы экспериментально изучили структуру и магнитные свойства полученных слоев. На финальном этапе под руководством профессора кафедры физики СПбГЭТУ «ЛЭТИ» и ведущего научного сотрудника ФТИ имени А. Ф. Иоффе РАН Петра Харитонского были выполнены теоретические оценки магнитного состояния оксида железа в исследованных образцах.
Как объяснила один из авторов работы, доцент кафедры физики Земли СПбГУ Елена Сергиенко, важнейшим инструментом в этом исследовании стал метод магнитно‑силовой микроскопии.
«Он позволяет с высоким разрешением визуализировать распределение магнитных полей на поверхности образца, фиксируя области формирования доменов и появление вихревых структур. Полученные трехмерные карты магнитных контрастов показали хаотичное распределение магнитных областей в слоях с буфером GaN (нитрида галлия)», — объяснила доцент СПбГУ Елена Сергиенко.
Работы выполнены с использованием оборудования ресурсных центров Научного парка СПбГУ: «Нанотехнологии»; Центр микроскопии и микроанализа; «Инновационные технологии композитных наноматериалов».
Результаты исследований показали, что наличие буферного слоя GaN усиливает магнитные характеристики материала: возрастает намагниченность насыщения и более выраженными становятся так называемые вихревые магнитные структуры. Они могут быть устойчивыми и по этой причине долго сохранять свое состояние, что делает их перспективными как для хранения информации, так и для использования в чувствительных элементах биосенсоров.